Part Number Hot Search : 
TMA2415D SE4110S LXT905LE IL2010B 855715 TP6A60 PC1350C Z5225
Product Description
Full Text Search
 

To Download IR2302STRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  half-bridge driver features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune ? gate drive supply range from 5 to 20v ? undervoltage lockout for both channels ? 3.3v, 5v and 15v input logic compatible ? cross-conduction prevention logic ? matched propagation delay for both channels ? high side output in phase with in input ? logic and power ground +/- 5v of fset. ? internal 540ns dead-time ? lower di/dt gate driver for better noise immunity ? shut down input turns off both channels ? 8-lead soic also available lead-free (pbf). ir2302 ( s ) & (pbf) data sheet no. pd60207 rev.a www.irf.com 1 packages 2106/2301//2108//2109/2302/2304 feature comparison description the ir2302(s) are high voltage, high speed power mosfet and igbt drivers with depen- dent high and low side referenced output channels. proprietary hvic and latch immune cmos technologies enable ruggedized monolithic construction. the logic input is compatible with standard cmos or lsttl output, down to 3.3v logic. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. the floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration which operates up to 600 volts. 8-lead pdip ir2302 8-lead soic ir2302(s) (also available lead-free (pbf)) typical connection ir2302 (refer to lead assignments for correct configuration). this/ these diagram(s) show elec- trical connections only. please refer to our application notes and designtips for proper circuit board layout.
ir2302( s ) & (pbf) 2 www.irf.com recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. the v s offset rating is tested with all supplies biased at 15v differential. note 1: logic operational for v s of -5 to +600v. logic state held for v s of -5v to -v bs . (please refer to the design tip dt97-3 for more details). vb high side floating supply absolute voltage v s + 5 v s + 20 v s high side floating supply offset voltage note 1 600 v ho high side floating output voltage v s v b v cc low side and logic fixed supply voltage 5 20 v lo low side output voltage 0 v cc v in logic input voltage (in & sd) com v cc t a ambient temperature -40 150 c symbol definition min. max. units v symbol definition min. max. units v b high side floating absolute voltage -0.3 625 v s high side floating supply offset voltage v b - 25 v b + 0.3 v ho high side floating output voltage v s - 0.3 v b + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v lo low side output voltage -0.3 v cc + 0.3 v in logic input voltage (in & sd) com - 0.3 v cc + 0.3 dv s /dt allowable offset supply voltage transient 50 v/ns p d package power dissipation @ t a +25 c (8 lead pdip) 1.0 (8 lead soic) 0.625 rth ja thermal resistance, junction to ambient (8 lead pdip) 125 (8 lead soic) 200 t j junction temperature 150 t s storage temperature -50 150 t l lead temperature (soldering, 10 seconds) 300 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. v c/w w c
ir2302( s ) & (pbf) www.irf.com 3 dynamic electrical characteristics v bias (v cc , v bs ) = 15v, c l = 1000 pf, and t a = 25 c unless otherwise specified. symbol definition min. typ. max. units test conditions t on turn-on propagation delay 550 750 950 v s = 0v t off turn-off propagation delay 200 280 v s = 0v or 600v t sd shut-down propagation delay 200 280 mt delay matching, hs & ls turn-on/off 0 50 t r turn-on rise time 130 220 v s = 0v t f turn-off fall time 50 80 v s = 0v dt deadtime: lo turn-off to ho turn-on(dt lo-ho) & 400 540 680 ho turn-off to lo turn-on (dt ho-lo) mdt deadtime matching = dt lo - ho - dt ho-lo 0 60 nsec static electrical characteristics v bias (v cc , v bs ) = 15v and t a = 25 c unless otherwise specified. the v il , v ih and i in parameters are referenced to com and are applicable to the respective input leads: in and sd. the v o , i o and ron par ameters are referenced to com and are applicable to the respective output leads: ho and lo. symbol definition min. t yp. max. units test conditions v ih logic 1 input voltage for ho & logic 0 for lo 2.9 v cc = 10v to 20v v il logic 0 input voltage for ho & logic 1 for lo 0.8 v cc = 10v to 20v v sd,th+ sd input positive going threshold 2.9 v cc = 10v to 20v v sd,th- sd input negative going threshold 0.8 v cc = 10v to 20v v oh high level output voltage, v bias - v o 0.8 1.4 i o = 20 ma v ol low level output voltage, v o 0.3 0.6 i o = 20 ma i lk offset supply leakage current 50 v b = v s = 600v i qbs quiescent v bs supply current 20 60 100 v in = 0v or 5v i qcc quiescent v cc supply current 0.4 1.0 1.6 ma v in = 0v or 5v i in+ logic 1 input bias current 5 20 in = 5v, sd = 0v i in- logic 0 input bias current 2 in = 0v, sd = 5v v ccuv+ v cc and v bs supply undervoltage 3.3 4.1 5 v bsuv+ positive going threshold v ccuv- v cc and v bs supply undervoltage 3 3.8 4.7 v bsuv- negative going threshold v ccuvh hysteresis 0.1 0.3 v bsuvh i o+ output high short circuit pulsed vurrent 120 200 v o = 0v, pw 10 s i o- output low short circuit pulsed current 250 350 v o = 15v,pw 10 s v a a v ma
ir2302( s ) & (pbf) 4 www.irf.com functional block diagrams sd uv detect delay com lo vcc in vs ho vb pulse filter hv level shifter r r s q uv detect pulse generator vss/com level shift vss/com level shift +5v deadtime
ir2302( s ) & (pbf) www.irf.com 5 lead assignments 8 lead pdip 8 lead soic (also available lead-free (pbf) 1 2 3 4 8 7 6 5 v cc in sd com v b ho v s lo 1 2 3 4 8 7 6 5 v cc in sd com v b ho v s lo ir2302 ir2302s lead definitions symbol description in logic input for high and low side gate driver outputs (ho and lo), in phase with ho sd logic input for shutdown v b high side floating supply ho high side gate drive output v s high side floating supply return v cc low side and logic fixed supply lo low side gate drive output com low side return
ir2302( s ) & (pbf) 6 www.irf.com figure 4. deadtime waveform definitions figure 3. shutdown waveform definitions figure 1. input/output timing diagram figure 2. switching time waveform definitions
ir2302( s ) & (pbf) www.irf.com 7 300 500 700 900 1100 1300 -50-250 255075100125 temperature ( o c) turn-on propagation delay (ns ) typ. m ax. figure 6a. turn-on propagation delay vs. temperature mi n. 300 500 700 900 1100 1300 1500 5101520 supply voltage (v) turn-on propagation delay (ns ) figure 6b. turn-on propagation delay vs. supply voltage typ. m ax. mi n. figure 5. delay matching waveform definitions
ir2302( s ) & (pbf) 8 www.irf.com 300 500 700 900 1100 1300 3691215 input voltage (v) turn-on propagation delay (ns) figure 6c. turn-on propagation delay vs. input voltage typ. m ax. mi n. 0 100 200 300 400 500 -50-25 0 25 50 75100125 temperature ( o c) turn-off propagation delay (ns) typ. m ax. figure 7a. turn-off propagation delay vs . te m perature 100 150 200 250 300 350 400 3691215 input voltage (v) turn-off propagation delay (ns) figure 7c. turn-off propagation delay vs. input voltage typ. m ax. 100 200 300 400 500 600 700 5101520 supply voltage (v) turn-off propagation delay (ns) figure 7b. turn-off propagation delay vs. supply voltage typ. m ax.
ir2302( s ) & (pbf) www.irf.com 9 100 200 300 400 500 600 700 5101520 supply voltage (v) shut-down propagation delay (ns) typ. m ax. figure 8b. shut-down propagation delay vs. supply voltage 0 100 200 300 400 500 -50-25 0 25 50 75100125 temperature ( o c) shut-down propagation delay (ns) typ. m ax. figure 8a. shut-down propagation delay vs. temperature 100 150 200 250 300 350 400 3 6 9 12 15 input voltage (v) shut-down propagation delay (ns) figure 8c. shut-down propagation delay vs. input voltage typ. m ax. 0 100 200 300 400 500 -50-25 0 25 50 75100125 temperature ( o c) turn-on rise time (ns ) typ. m ax. figure 9a. turn-on rise time vs . te m perature
ir2302( s ) & (pbf) 10 www.irf.com 0 100 200 300 400 500 600 700 5101520 supply voltage (v) turn-on rise time (ns ) figure 9b. turn-on rise time vs. supply voltage typ. m ax. 0 50 100 150 200 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off fall time (ns) typ. m ax. figure 10a. turn-off fall time vs . te m perature 0 50 100 150 200 5101520 supply voltage (v) turn-off fall time (ns) figure 10b. turn-off fall time vs. supply voltage typ. m ax. 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) deadtime (ns) figure 11a. deadtim e vs . te m perature mi n. m ax. typ.
ir2302( s ) & (pbf) www.irf.com 11 0 200 400 600 800 1000 5101520 supply voltage (v) deadtime (ns) figure 11b. deadtim e vs. supply voltage typ. m ax. mi n. 0 1 2 3 4 5 6 7 0 50 100 150 200 rdt ( k ? ) deadtime ( s) figure 11c. deadtim e vs. rdt typ. m ax. mi n. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input voltage (v) m ax. figure 12a. logic "1" input voltage vs. temperature 0 1 2 3 4 5 6 5 101520 supply voltage (v) logic "1" input voltage (v) figure 12b. logic "1" input voltage vs. supply voltage m ax.
ir2302( s ) & (pbf) 12 www.irf.com 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input voltage (v) mi n. figure 13a. logic "0" input voltage vs . te m perature 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) sd input positive going threshold ( v m ax. figure 14a. sd input positive going threshold vs . te m perature 0 1 2 3 4 5 6 5 101520 supply voltage (v) sd input positive going threshold (v figure 14b. sd input positive going threshold vs. supply voltage m ax. 0 1 2 3 4 5 6 5 101520 supply voltage (v) logic "0" input voltage (v) figure 13b. logic "0" input voltage vs. supply voltage mi n.
ir2302( s ) & (pbf) www.irf.com 13 0 1 2 3 4 5 6 -50-25 0 25 50 75100125 temperature ( o c) sd input negative going threshold (v ) mi n. figure 15a. sd input negative going threshold vs . te m perature 0 1 2 3 4 5 6 5101520 supply voltage (v) sd input negative going threshold (v figure 15b. sd input negative going threshold vs. supply voltage mi n. 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output voltage (v) m ax. figure 16a. high level output voltage vs . te m perature typ. 0 1 2 3 4 5 6 5 101520 supply voltage (v) high level output voltage (v) figure 16b. high level output voltage vs. supply voltage typ. m ax.
ir2302( s ) & (pbf) 14 www.irf.com 0.0 0.5 1.0 1.5 2.0 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output voltage (v) m ax. figure 17a. low level output voltage vs . te m perature typ. 0.0 0.5 1.0 1.5 2.0 5101520 supply voltage (v) low level output voltage (v) figure 17b. low level output voltage vs. supply voltage typ. m ax. 0 100 200 300 400 500 -50-25 0 25 50 75100125 temperature ( o c) offset supply leakage current ( a) m ax. figure 18a. offset supply leakage current vs . te m perature 0 100 200 300 400 500 100 200 300 400 500 600 of f set supply voltage (v) offset supply leakage current (ma) figure 18b. offset supply leakage current vs. offset supply voltage m ax.
ir2302( s ) & (pbf) www.irf.com 15 0 50 100 150 200 -50-25 0 25 50 75100125 temperature ( o c) quiescent v bs supply current ( a) mi n. figure 19a. quiescent v bs supply current vs . te m perature typ. m ax. 0 50 100 150 200 5101520 v bs supply voltage (v) quiescent v bs supply current ( a) figure 19b. quiescent v bs supply current vs . v bs supply voltage typ. m ax. mi n. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temperature ( o c) quiescent v cc supply current (ma) mi n. figure 20a. quiescent v cc supply current vs . te m perature typ. max 0 0.5 1 1.5 2 2.5 3 5 101520 v cc supply voltage (v) quiescent v cc supply current (ma) figure 20b. quiescent v cc supply current vs . v cc supply voltage typ. m ax. mi n.
ir2302( s ) & (pbf) 16 www.irf.com 0 10 20 30 40 50 60 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input bias current ( a) figure 21a. logic "1" input bias current vs . te m perature typ. m ax. 0 10 20 30 40 50 5101520 supply voltage (v) logic "1" input bias current (ma ) figure 21b. logic "1" input bias current vs. supply voltage typ. m ax. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input bias current ( a) figure 22a. logic "0" input bias current vs. temperature m ax. 0 1 2 3 4 5 5101520 supply voltage (v) logic "0" input bias current (ma ) figure 22b. logic "0" input bias current vs. supply voltage m ax.
ir2302( s ) & (pbf) www.irf.com 17 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc and v bs undervoltage threshold (+) (v) mi n. figure 23. v cc and v bs undervoltage threshold (+) vs. temperature typ. m ax. 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc and v bs undervoltage threshold (-) (v) mi n. figure 24. v cc and v bs undervoltage threshold (-) vs. temperature typ. m ax. 0 100 200 300 400 5 101520 supply voltage (v) output source current (ma) figure 25b. output source current vs. supply voltage typ. mi n. 0 100 200 300 400 -50 -25 0 25 50 75 100 125 temperature ( o c) output source current (ma) mi n. figure 25a. output source current vs. temperature typ.
ir2302( s ) & (pbf) 18 www.irf.com 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (ma ) mi n. figure 26a. output sink current vs. temperature typ. -12 -10 -8 -6 -4 -2 0 5101520 v bs floating supply voltage (v) maximum v s negative offset (v) figure 27. maximum v s negative offset vs . v bs floating supply voltage typ. 0 100 200 300 400 500 600 5 101520 supply voltage (v) output sink current (ma ) figure 26b. output sink current vs. supply voltage typ. mi n. 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temprature ( o c) 70v figure 28. ir2302 vs. frequency (irfbc20), r gate =33 ? , v cc =15v 140v 0v
ir2302( s ) & (pbf) www.irf.com 19 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 1 40v 70v 0v figure 30. ir2302 vs. frequency (irfbc40), r gate =15 ? , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 31. ir2302 vs. frequency (irfpe50), r gate =10 ? , v cc =15v 0v 140v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 32. ir2302s vs. frequency (irfbc20), r gate =33 ? , v cc =15v 0v 70v 1 40v figure 29. ir2302 vs. frequency (irfbc30), r gate =22 ? ? ? ? ? , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 0v 70v
ir2302( s ) & (pbf) 20 www.irf.com 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 1 40v 70v 0v figure 33. ir2302s vs. frequency (irfbc30), r gate =22 ? , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 0v figure 34. ir2302s vs. frequency (irfbc40), r gate =15 ? , v cc =15v 140v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) tempreture ( o c) figure 35. ir2302s vs. frequency (irfpe50), r gate =10 ? , v cc =15v 140v 70v 0v
ir2302( s ) & (pbf) www.irf.com 21 case outlines 01-6027 01-0021 11 (ms-012aa) 8 lead soic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 4 3 12 4. outline conforms to jedec outline ms-012aa. notes: 1. dimensioning & toleranc ing per asme y14.5m-1994. 2. controlling dimension: millimeter 3. dimensions are shown in millimeters [inches]. 7 k x 45 8x l 8x c y footprint 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 8x 1.78 [.070] 5 dimension does not include mold protrusions. 6 dimension does not include mold protrusions. mold protrusions no t to exc eed 0.25 [.010]. 7 dimension is the length of lead for soldering to a substrate. mold protrusions no t to exc eed 0.15 [.006]. 0.25 [.010] cab e1 a a1 8x b c 0.10 [.004] e1 d e y b a a1 h k l .189 .1497 0 .013 .050 basic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 basic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 min max millimeters in c h e s min max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic 01-6014 01-3003 01 (ms-001ab) 8 lead pdip
ir2302( s ) & (pbf) 22 www.irf.com basic part (non-lead free) 8-lead pdip ir2302 order ir2302 8-lead soic ir2302s order ir2302s leadfree part 8-lead pdip r2302 not available 8-lead soic ir2302s order ir2302spbf order information leadfree part marking information lead free released non-lead free released part number date code irxxxxxx yww? ?xxxx pin 1 identifier ir logo lot code (prod mode - 4 digit spn code) assembly site code per scop 200-002 p ? marking code thisproduct has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site http://www.irf.com data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 8/16/2004


▲Up To Search▲   

 
Price & Availability of IR2302STRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X